|logo_uqam_couleur-blanc.svg|UQAM, Université du Québec à Montréal|38

Université du Québec à Montréal|uqam|

Portail sur la recherche nordique et arctique de l'UQAM



Julie Mireille Thériault

Photo générique

Département des sciences de la Terre et de l'atmosphère
Poste : Professeure
Courriel :
Téléphone : (514) 987-3000 poste 4276
Local : PK-6430


  • Français
  • Anglais


Informations générales

Cheminement académique

2015- : Professeur permanent (associate professor), Université du Québec à Montréal (UQAM),Montréal, Québec, Canada

2011-2015: Professeur régulier (assistant professor), Université du Québec à Montréal (UQAM),Montréal, Québec, Canada

2009-2011: Advanced Study Program (ASP) Postodc, National Center for Atmospheric Research (NCAR), Boulder, Colorado

2004-2009: PhD Sciences atmosphériques, McGill University, Montréal, Québec, Canada

2002-2004: MSc Scicences atmosphériques, McGill University, Montréal, Québec, Canada

1998-2002: BSc Spécialisation physique, Université de Moncton, Montréal, Québec, Canada

Liens d’intérêt

Unités de recherche

  • Centre pour l'étude et la simulation du climat à l'échelle régionale (ESCER)

Projets de recherche en cours

  • Global Water Futures - Pillar 3 Mountain Water Futures

    This project is lead by S. Carey at McMaster University. The goal of this project is to understand future water for the mountains of Western Canada and to improve the ability to predict future hydrological regimes and plan appropriate adaptation. Changes to Canada's western mountains are having profound and rapid impact on the rate, magnitude and timing of streamflow regimes, which is challenging current water resource management practices in the region.

  • Global Water Futures - Pillar 3 Precipitation-Related Climate Extremes

    This network is led by Ronald Stewart, University of Manitoba, and Francis Zwiers, Pacific Climate Impacts Consortium. This project will provide new insights into the future occurrence of precipitation-related extremes including drought, intense precipitation events and hazardous winter precipitation. Such extremes impact many sectors across Canada including agriculture (such as through effects on food production and crop damage), electrical utilities (such as through hydro power generation and transmission impacts), engineering design (such as through improved estimation of return levels for extreme precipitation), health (such as through impacts on water quality and water-borne diseases), and insurance (with a backdrop of recent record-breaking payouts such as the Calgary flooding and Fort McMurray wildfire).

  • Canadian Network for Regional Climate and Weather Processes

    This network is led by Prof. Laxmi Sushama. The goal is to exploit the added value of high-resolution models on climate and weather simulations, in particular in the representation of extremes, afforded as a result of the improved representation of physical processes, feedbacks and interactions through a Regional Earth System Model approach.

  • Changing Cold Regions Network (CCRN)

    This network is led by Prof Howard Weather, University of Saskatchewan. CCRN's overall aims are to integrate existing and new sources of data with improved predictive and observational tools to understand, diagnose and predict interactions amongst the cryospheric, ecological, hydrological, and climatic components of the changing Earth system at multiple scales, with a geographic focus on Western Canada's rapidly changing cold interior.

Partenaires (organismes, entreprises)

  • Je travaille en collaboration avec le consortium Ouranos, plusieurs universités canadiennes, Environnement Changement climatique Canada et le National Center of Atmospheric Research (NCAR).


Enseignement et supervision


Direction de thèses et de mémoires (Depuis 2006) et d’essais doctoraux (depuis 2014)

  • Cholette, Mélissa (2020) Simulation des processus microphysiques et des types de précipitations hivernales lors de la tempête de verglas de janvier 1998, en utilisant la prévision de la fraction liquide. (Thèse de doctorat). Université du Québec à Montréal.




  • Li, Y., Szeto, K., Stewart, R.E., et al. (2017). A numerical study of the June 2013 flood-producing extreme rainstorm over southern Alberta. Journal of hydrometeorology, 18(8), 2057–2078.
  • Matte, D., Thériault, J.M. et Laprise, R. (2017). Climate change study of mixed precipitation oversouthern Quebec using a Regional Climate Model. Climate Dynamics.
  • Bresson, E., Laprise, R., Paquin, D., Thériault, J.M. et De Elia, R. (2017). Evaluating CRCM5 ability to simulate mixed precipitation. Atmosphere-Ocean, 55(2), 79–93.
  • Barszcz, A., Milbrandt, J.A. et Thériault, J.M. (2017). Improving the explicit prediction of freezing rain in a km-scalenumerical weather prediction model. Weather and Forecasting.
  • Matte, D., Laprise, R. et Thériault, J.M. (2016). Comparison between high-resolution climate simulations using single and double nesting within the Big-Brother experimental protocol. Climate Dynamics, 47(12), 3613–3626.
  • Sankaré, H. et Thériault, J.M. (2016). On the relationship between the snowflake type aloft and the surface precipitation types at temperatures near 0°C. Atmospheric Research, 180, 287–296.
  • Matte, D., Laprise, R., Thériault, J.M. et Lucas-Picher, P. (2016). Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Climate Dynamics, 49(1), 563–574.
  • Colli, M., Lanza, L.G., Rasmussen, R. et Thériault, J.M. (2016). The collection efficiency of shielded and unshielded precipitation gauges: Part 1: CDF airflow modelling. Journal of hydrometeorology, 17(1), 231–243.
  • Colli, M., Lanza, L.G., Rasmussen, R. et Thériault, J.M. (2016). The collection efficiency of shielded and unshielded precipitation gauges: Part 2: Modeling particle trajectories. Journal of hydrometeorology, 17(1), 245–255.
  • Liu, A., Mooney, C., Szeto, K., et al. (2016). The June 2013 Alberta Catastrophic Flooding Event : Part 1 – Climatological aspects and hydrometeorological features. Hydrological Processes, 30(26), 4899–4916.
  • Kochtubajda, B., Stewart, R.E., Boodoo, S., et al. (2016). The June 2013 Alberta Catastrophic Flooding Event : Part 2 – Fine-scale precipitation and associated features. Hydrological Processes, 30(26), 4917–4933.
  • Colli, M., Rasmussen, R., Theriault, J.M., Lanza, L.G., Baker, C.B. et Kochendorfer, J. (2015). An improved trajectory model to evaluate the collection performance of snow gauges. Journal Of Applied Meteorology And Climatology, 54(1826-1836), 1826–1836.
  • St-Pierre, M. et Thériault, J.M. (2015). Clarification of the water saturation represented on ice crystal growth diagrams. Journal of the atmospheric sciences, 72(7), 2608–2611.
  • Thériault, J.M., Milbrandt, J.A., Doyle, J., et al. (2015). Impact of melting snow on the valley flow field and precipitation phase transition. Atmospheric Research, 156, 111–124.
  • Thériault, J.M., Rasmussen, R., Petro, E., Trépanier, J.-Y., Colli, M. et Lanza, L.G. (2015). Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference. Journal of Applied Meteorology and Climatology, 54(9), 1918–1930.
  • Stewart, R.E., Thériault, J.M., Henson et W. (2015). On the characteristics of and processes producing winter precipitation types near 0°C. Bulletin of the American Meteorological Society, 96, 623–639.
  • Cholette, M., Laprise, R. et Thériault, J.M. (2015). Perspectives for kilometer-scale regional climate simulations and projections : Illustration of potential in simulating St. Lawrence River Valley channelling winds with the Canadian Regional Climate Model. Climate, 32(2), 283–307.
  • Milbrandt, J., Thériault, J.M. et Mo, R. (2014). Modeling the phase transition associated with melting snow in a 1D kinematic framework: Sensitivity to the microphysics. Pure and Applied Geophysics, 17(1), 303–322.
  • Gultepe I., Isaac, G.A., Kucera, P., Thériault, J.M. et Fisico, T. (2014). Roundhouse (RND) mountain-top research site during SNOW-V10: Measurements an uncertainties. Pure and Applied Geophysics, 171(1/2), 59–85.
  • Joe, P., Scott, B., Doyle, C., et al. (2014). The monitoring network of the Vancouver 2010 Olympics. Pure and Applied Geophysics, 171(1), 25–58.
  • Thériault, J.M., Rasmussen, K., Fisico, T., et al. (2014). Weather observations along Whistler Mountain in five storms during SNOWV10. Pure and Applied Geophysics, 17(1), 129–155.
  • Muhlbauer, A., Grabowski, W.W., Malinowski, S.P., et al. (2013). Reexamination of the state of the art of cloud modeling shows real improvements. Bulletin of the American Meteorological Society, 94(5), ES45–ES48.
  • Thériault, J.M., Rasmussen, R., Smith, T., et al. (2012). A case study of processes impacting precipitation phase and intensity during the vancouver 2010 winter olympics. Weather and Forecasting, 27(6), 1301–1325.
  • Thériault, J.M., Rasmussen, R., Ikeda, K. et Landolt, S. (2012). Dependence of snow gauge collection efficiency on snowflake characteristics. Journal of Applied Meteorology and Climatology, 51(4), 745–762.
  • Rasmussen, R., Baker, B., Kochendorfer, J., et al. (2012). How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bulletin of the American Meteorological Society, 93(6), 811–829.
  • Thériault, J.M., Stewart, R.E. et Henson, W. (2012). Impacts of terminal velocity on the trajectory of winter precipitation types. Atmospheric Research, 116, 116–129.
  • Carmichael, H.E., Stewart, R.E., Henson, W. et Thériault, J.M. (2011). Environmental conditions favoring ice pellet aggregation. Atmospheric Research, 101(4), 844–851.
  • Henson, W., Stewart, R., Kochtubajda, B. et Thériault, J. (2011). The 1998 Ice Storm: Local flow fields and linkages to precipitation. Atmospheric Research, 101(4), 852–862.
  • Thériault, J.M. et Stewart, R.E. (2010). A parameterization of the microphysical processes forming many types of winter precipitation. Journal of the Atmospheric Sciences, 67(5), 1492–1508.
  • Thériault, J.M., Stewart, R.E. et Henson, W. (2010). On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. Journal of Applied Meteorology and Climatology, 49(7), 1429–1442.
  • Thériault, J.M. et Stewart, R.E. (2007). On the effects of vertical air velocity on winter precipitation types. Natural Hazards and Earth System Science, 7(2), 231–242.
  • Thériault, J.M., Stewart, R.E., Milbrandt, J.A. et Yau, M.K. (2006). On the simulation of winter precipitation types. Journal of Geophysical Research : Atmospheres, 111(D18), D18202.
  • Stoelinga M.T., Steward, R.E., Thompson, G. et Thériault, J.M. (2013). Microphysical processes within orographic cloud and precipitation systems. Dans K.C. Fotini, F.J. Stephan, De Wekker, B. et J. Snyder (dir.). Mountain Weather Research and Forecasting: Recent Progress and Current Challenges (p. 345–408). Dordrecht : Springer.
  • Rasmussen, R., Baker, B., Kochendorfer, J., et al. (2014). Methodology to use and unshielded and Alter shielded snowgauge to estimate true snowfall (R3) for SPICE.









Prix et distinctions


Services à la collectivité

Services à la collectivité

2016-2019: Canadian Meteorological and Oceanographic Society (CMOS) Scientific committee

2016-2019: Canadian Meteorological and Oceanographic Society (CMOS) University and Professional Eduation committee

2016-2020: Commissaire, International Conference on Clouds & Precipitations


Retour en haut de page