https://portailnordique.uqam.ca/

http://www.uqam.ca/|logo_uqam_couleur-blanc.svg|UQAM, Université du Québec à Montréal|38



Université du Québec à Montréal|uqam|http://www.uqam.ca/

Portail sur la recherche nordique et arctique de l'UQAM


Recherche


nordique.uqam@gmail.com



experts

Julie Mireille Thériault

Photo générique

Département des sciences de la Terre et de l'atmosphère
Poste : Professeure
Courriel : theriault.julie@uqam.ca
Téléphone : (514) 987-3000 poste 4276
Local : PK-6430

Langues

  • Français
  • Anglais

...

Informations générales

Cheminement académique

2018- : Titulaire de Chaire de recherche du Canada en Évènements météorologiques hivernaux extrêmes - Canada Research Chaire in Extreme Winter Weather Events

2015- : Professeur permanent (associate professor), Université du Québec à Montréal (UQAM),Montréal, Québec, Canada

2011-2015: Professeur régulier (assistant professor), Université du Québec à Montréal (UQAM),Montréal, Québec, Canada

2009-2011: Advanced Study Program (ASP) Postodc, National Center for Atmospheric Research (NCAR), Boulder, Colorado

2004-2009: PhD Sciences atmosphériques, McGill University, Montréal, Québec, Canada

2002-2004: MSc Scicences atmosphériques, McGill University, Montréal, Québec, Canada

1998-2002: BSc Spécialisation physique, Université de Moncton, Montréal, Québec, Canada


Liens d’intérêt

Unités de recherche

  • Centre pour l'étude et la simulation du climat à l'échelle régionale (ESCER)

Projets de recherche en cours

  • Simulation et analyse du climat à haute résolution (SACHR)

    L'objectif principal est de développer une nouvelle version du Modèle régional canadien du climat (MRCC), la version 6 qui sera configurée afin d'atteindre une très haute résolution spatiale (ordre du 1 km). Ce réseau est piloté par René Laprise.

  • Global Water Futures - Core Modelling Team

    The core modelling team is led by Martyn Clark and Al Pietroniro. I am leading the section on 'Spatial Meteorogical Forcing Data' that aims to produce spatial meteorological datasets using dynamical downscaling, statistical downscaling and station data product over North America to conduct, for example, atmospheric and hydrological process studies.

  • Global Water Futures - Pillar 1 Saint John River Experiment on Cold Season Storms (SAJESS)

    Ce projet vise à mieux comprendre l'impact de la phase de la précipitation durant la saison froide sur l'évolution du manteau neigeux au printemps.

  • Modélisation hydrologique avec bilan énergétique (ÉVAP) - 2

    Ce projet est la continuation du projet Modélisation hydrologique avec bilan énergétique (ÉVAP) mené en collaboration avec Ouranos, Hydro-Québec et plusieurs universités au Québec. Le projet est piloté par François Anctil, l'Université Laval.

  • Global Water Futures - Pillar 1 Storms and Precipitation Across the Continental Divide Experiment (SPADE)

    This project aims to better understand fine-scale factors leading to storms and precipitation across the continental divide north of the Canada-US border.

  • Global Water Futures - Pillar 3 Mountain Water Futures

    This project is lead by S. Carey at McMaster University. The goal of this project is to understand future water for the mountains of Western Canada and to improve the ability to predict future hydrological regimes and plan appropriate adaptation. Changes to Canada's western mountains are having profound and rapid impact on the rate, magnitude and timing of streamflow regimes, which is challenging current water resource management practices in the region.

  • Global Water Futures - Pillar 3 Precipitation-Related Climate Extremes

    This network is led by Ronald Stewart, University of Manitoba, and Francis Zwiers, Pacific Climate Impacts Consortium. This project will provide new insights into the future occurrence of precipitation-related extremes including drought, intense precipitation events and hazardous winter precipitation. Such extremes impact many sectors across Canada including agriculture (such as through effects on food production and crop damage), electrical utilities (such as through hydro power generation and transmission impacts), engineering design (such as through improved estimation of return levels for extreme precipitation), health (such as through impacts on water quality and water-borne diseases), and insurance (with a backdrop of recent record-breaking payouts such as the Calgary flooding and Fort McMurray wildfire).

Partenaires (organismes, entreprises)

  • Je travaille en collaboration avec le consortium Ouranos, Énergie Nouveau Brunswick, Hydro Québec, plusieurs universités (ex: University of Northern British Columbia, University of Manitoba, University of Saskatchewan, McGill University et Université Laval), Environnement Changement climatique Canada et le National Center of Atmospheric Research (NCAR).

...

Enseignement et supervision

Cours

Direction de thèses et de mémoires (Depuis 2006) et d’essais doctoraux (depuis 2014)

...

Publications

Publications

  • Li, Y., Szeto, K., Stewart, R.E., et al. (2017). A numerical study of the June 2013 flood-producing extreme rainstorm over southern Alberta. Journal of hydrometeorology, 18(8), 2057–2078. http://dx.doi.org/10.1175/JHM-D-15-0176.1.
  • Matte, D., Thériault, J.M. et Laprise, R. (2017). Climate change study of mixed precipitation oversouthern Quebec using a Regional Climate Model. Climate Dynamics.
  • Bresson, E., Laprise, R., Paquin, D., Thériault, J.M. et De Elia, R. (2017). Evaluating CRCM5 ability to simulate mixed precipitation. Atmosphere-Ocean, 55(2), 79–93. http://dx.doi.org/10.1080/07055900.2017.1310084.
  • Barszcz, A., Milbrandt, J.A. et Thériault, J.M. (2017). Improving the explicit prediction of freezing rain in a km-scalenumerical weather prediction model. Weather and Forecasting.
  • Matte, D., Laprise, R. et Thériault, J.M. (2016). Comparison between high-resolution climate simulations using single and double nesting within the Big-Brother experimental protocol. Climate Dynamics, 47(12), 3613–3626. http://dx.doi.org/10.1007/s00382-016-3031-9.
  • Sankaré, H. et Thériault, J.M. (2016). On the relationship between the snowflake type aloft and the surface precipitation types at temperatures near 0°C. Atmospheric Research, 180, 287–296. http://dx.doi.org/10.1016/j.atmosres.2016.06.003.
  • Matte, D., Laprise, R., Thériault, J.M. et Lucas-Picher, P. (2016). Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Climate Dynamics, 49(1), 563–574. http://dx.doi.org/10.1007/s00382-016-3358-2.
  • Colli, M., Lanza, L.G., Rasmussen, R. et Thériault, J.M. (2016). The collection efficiency of shielded and unshielded precipitation gauges: Part 1: CDF airflow modelling. Journal of hydrometeorology, 17(1), 231–243. http://dx.doi.org/10.1175/JHM-D-15-0010.1.
  • Colli, M., Lanza, L.G., Rasmussen, R. et Thériault, J.M. (2016). The collection efficiency of shielded and unshielded precipitation gauges: Part 2: Modeling particle trajectories. Journal of hydrometeorology, 17(1), 245–255. http://dx.doi.org/10.1175/JHM-D-15-0011.1.
  • Liu, A., Mooney, C., Szeto, K., et al. (2016). The June 2013 Alberta Catastrophic Flooding Event : Part 1 – Climatological aspects and hydrometeorological features. Hydrological Processes, 30(26), 4899–4916. http://dx.doi.org/10.1002/hyp.10906.
  • Kochtubajda, B., Stewart, R.E., Boodoo, S., et al. (2016). The June 2013 Alberta Catastrophic Flooding Event : Part 2 – Fine-scale precipitation and associated features. Hydrological Processes, 30(26), 4917–4933. http://dx.doi.org/10.1002/hyp.10855.
  • Colli, M., Rasmussen, R., Theriault, J.M., Lanza, L.G., Baker, C.B. et Kochendorfer, J. (2015). An improved trajectory model to evaluate the collection performance of snow gauges. Journal Of Applied Meteorology And Climatology, 54(1826-1836), 1826–1836. http://dx.doi.org/10.1175/JAMC-D-15-0035.1.
  • St-Pierre, M. et Thériault, J.M. (2015). Clarification of the water saturation represented on ice crystal growth diagrams. Journal of the atmospheric sciences, 72(7), 2608–2611. http://dx.doi.org/10.1175/JAS-D-14-0357.1.
  • Thériault, J.M., Milbrandt, J.A., Doyle, J., et al. (2015). Impact of melting snow on the valley flow field and precipitation phase transition. Atmospheric Research, 156, 111–124. http://dx.doi.org/10.1016/j.atmosres.2014.12.006.
  • Thériault, J.M., Rasmussen, R., Petro, E., Trépanier, J.-Y., Colli, M. et Lanza, L.G. (2015). Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference. Journal of Applied Meteorology and Climatology, 54(9), 1918–1930. http://dx.doi.org/10.1175/JAMC-D-15-0034.1.
  • Stewart, R.E., Thériault, J.M., Henson et W. (2015). On the characteristics of and processes producing winter precipitation types near 0°C. Bulletin of the American Meteorological Society, 96, 623–639. http://dx.doi.org/10.1175/BAMS-D-14-00032.1.
  • Cholette, M., Laprise, R. et Thériault, J.M. (2015). Perspectives for kilometer-scale regional climate simulations and projections : Illustration of potential in simulating St. Lawrence River Valley channelling winds with the Canadian Regional Climate Model. Climate, 32(2), 283–307. http://dx.doi.org/10.3390/cli3020283.
  • Milbrandt, J., Thériault, J.M. et Mo, R. (2014). Modeling the phase transition associated with melting snow in a 1D kinematic framework: Sensitivity to the microphysics. Pure and Applied Geophysics, 17(1), 303–322. http://dx.doi.org/10.1007/s00024-012-0552-y.
  • Gultepe I., Isaac, G.A., Kucera, P., Thériault, J.M. et Fisico, T. (2014). Roundhouse (RND) mountain-top research site during SNOW-V10: Measurements an uncertainties. Pure and Applied Geophysics, 171(1/2), 59–85. http://dx.doi.org/10.1007/s00024-012-0582-5.
  • Joe, P., Scott, B., Doyle, C., et al. (2014). The monitoring network of the Vancouver 2010 Olympics. Pure and Applied Geophysics, 171(1), 25–58. http://dx.doi.org/10.1007/s00024-012-0588-z.
  • Thériault, J.M., Rasmussen, K., Fisico, T., et al. (2014). Weather observations along Whistler Mountain in five storms during SNOWV10. Pure and Applied Geophysics, 17(1), 129–155. http://dx.doi.org/10.1007/s00024-012-0590-5.
  • Muhlbauer, A., Grabowski, W.W., Malinowski, S.P., et al. (2013). Reexamination of the state of the art of cloud modeling shows real improvements. Bulletin of the American Meteorological Society, 94(5), ES45–ES48. http://dx.doi.org/10.1175/BAMS-D-12-00188.1.
  • Thériault, J.M., Rasmussen, R., Smith, T., et al. (2012). A case study of processes impacting precipitation phase and intensity during the vancouver 2010 winter olympics. Weather and Forecasting, 27(6), 1301–1325. http://dx.doi.org/10.1175/WAF-D-11-00114.1.
  • Thériault, J.M., Rasmussen, R., Ikeda, K. et Landolt, S. (2012). Dependence of snow gauge collection efficiency on snowflake characteristics. Journal of Applied Meteorology and Climatology, 51(4), 745–762. http://dx.doi.org/10.1175/JAMC-D-11-0116.1.
  • Rasmussen, R., Baker, B., Kochendorfer, J., et al. (2012). How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bulletin of the American Meteorological Society, 93(6), 811–829. http://dx.doi.org/10.1175/BAMS-D-11-00052.1.
  • Thériault, J.M., Stewart, R.E. et Henson, W. (2012). Impacts of terminal velocity on the trajectory of winter precipitation types. Atmospheric Research, 116, 116–129. http://dx.doi.org/10.1016/j.atmosres.2012.03.008.
  • Carmichael, H.E., Stewart, R.E., Henson, W. et Thériault, J.M. (2011). Environmental conditions favoring ice pellet aggregation. Atmospheric Research, 101(4), 844–851. http://dx.doi.org/10.1016/j.atmosres.2011.05.015.
  • Henson, W., Stewart, R., Kochtubajda, B. et Thériault, J. (2011). The 1998 Ice Storm: Local flow fields and linkages to precipitation. Atmospheric Research, 101(4), 852–862. http://dx.doi.org/10.1016/j.atmosres.2011.05.014.
  • Thériault, J.M. et Stewart, R.E. (2010). A parameterization of the microphysical processes forming many types of winter precipitation. Journal of the Atmospheric Sciences, 67(5), 1492–1508. http://dx.doi.org/10.1175/2009JAS3224.1.
  • Thériault, J.M., Stewart, R.E. et Henson, W. (2010). On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. Journal of Applied Meteorology and Climatology, 49(7), 1429–1442. http://dx.doi.org/10.1175/2010JAMC2321.1.
  • Thériault, J.M. et Stewart, R.E. (2007). On the effects of vertical air velocity on winter precipitation types. Natural Hazards and Earth System Science, 7(2), 231–242. http://dx.doi.org/10.5194/nhess-7-231-2007.
  • Thériault, J.M., Stewart, R.E., Milbrandt, J.A. et Yau, M.K. (2006). On the simulation of winter precipitation types. Journal of Geophysical Research : Atmospheres, 111(D18), D18202. http://dx.doi.org/10.1029/2005JD006665.
  • Stoelinga M.T., Steward, R.E., Thompson, G. et Thériault, J.M. (2013). Microphysical processes within orographic cloud and precipitation systems. Dans K.C. Fotini, F.J. Stephan, De Wekker, B. et J. Snyder (dir.). Mountain Weather Research and Forecasting: Recent Progress and Current Challenges (p. 345–408). Dordrecht : Springer.
  • Rasmussen, R., Baker, B., Kochendorfer, J., et al. (2014). Methodology to use and unshielded and Alter shielded snowgauge to estimate true snowfall (R3) for SPICE.

...

Communications

Communications

...

Réalisations

Réalisations

...

Distinctions

Prix et distinctions

...

Services à la collectivité

Services à la collectivité

2019- : Comité de gestion stratégique du programme Global Water Futures

2016-2019: Canadian Meteorological and Oceanographic Society (CMOS) Scientific committee

2016-2019: Canadian Meteorological and Oceanographic Society (CMOS) University and Professional Eduation committee

2016-2020: Commissaire, International Conference on Clouds & Precipitations

...

Retour en haut de page